Input oriented model
The following DEA model is an input-oriented model where the inputs are minimized and the outputs are kept at their current levels.
[ ]:
# .. math::
# & \theta^* = \min \theta, \text{subject to} \\
# & \sum_{j=1}^{n} \lambda_j x_{i, j} \leq \theta x_{i, o}, \quad i=1,2, \dots, m; \\
# & \sum_{j=1}^{n} \lambda_j y_{r, j} \geq y_{r, o}, \quad r=1,2, \dots, s; \\
# & \sum_{j=1}^{n} \lambda_j = 1 \\
# & \lambda_j \geq 0, \quad j=1,2, \dots, n.
# where :math:`DMU_o` represents one of the :math:`n` DMUs under evaluation,
# and :math:`x_{i, o}` and :math:`y_{r, o}` are the :math:`i` th input and :math:`r` th output
# for :math:`DMU_o`, respectively.
Import modules and prepare data.
Sample supply chain data is generated.
[ ]:
import matplotlib.pyplot as plt
import pandas as pd
from Pyfrontier.frontier_model import EnvelopDEA
supply_chain_df = pd.DataFrame(
{"day": [1, 2, 4, 6, 4], "cost": [5, 2, 1, 1, 4], "profit": [15, 15, 15, 15, 15]}
)
supply_chain_df
Fit dea model.
The necessity inputs are inputs and outputs. The result has below belongings.
[ ]:
dea = EnvelopDEA("CRS", "in")
dea.fit(
supply_chain_df[["day", "cost"]].to_numpy(),
supply_chain_df[["profit"]].to_numpy(),
)
dea.result[0]
Visualize the result.
.
[ ]:
eff_dmu = [r.dmu for r in dea.result if r.is_efficient]
ineff_dmu = [r.dmu for r in dea.result if r.is_efficient != 1]
weak_eff_dmu = [r.dmu for r in dea.result if r.has_slack]
plt.figure()
plt.plot(
[d.input[0] for d in eff_dmu],
[d.input[1] for d in eff_dmu],
"-o",
label="efficient dmu",
)
plt.plot(
[d.input[0] for d in ineff_dmu],
[d.input[1] for d in ineff_dmu],
"o",
label="not-efficient dmu",
)
plt.plot(
[d.input[0] for d in weak_eff_dmu],
[d.input[1] for d in weak_eff_dmu],
"o",
label="weak-efficient dmu",
)
plt.plot([4, 6], [1, 1], linestyle="--", color="black")
plt.legend()
plt.show()
About slack
.
[ ]:
print([r.score for r in dea.result])
print([r.is_efficient for r in dea.result])
print([r.has_slack for r in dea.result])
print(dea.result[-2].x_slack, dea.result[-2].y_slack)